Fashion Tech News Symbol
お気に入り閲覧履歴
/
NEW マイページ機能追加
お気に入りと閲覧履歴の機能が追加されました!
会員登録すると、さらに便利に利用できます。
2021.06.07

独自の画像AI解析によるリセールバリューの把握と予測、プライスバンク

リンクをコピーしました
グローバル規模で、リセール市場は成長を続け、さらなる拡大が見込まれている。特にサステナビリティへの意識やミニマリスト的な生活への関心も高まるなかで、Z世代を中心にリセールの活用が進んでいる。またフリマアプリやオークションサイトの普及と共に、購入時からリセールバリューを意識する一般消費者も増えていることだろう。
しかしながら、中古品は膨大なアイテム数が存在し、一部のブランド品を除いて価値の把握が難しい。そういった課題にアプローチし、リセールバリューの解明を提案するのが株式会社プライスバンクだ。どのようにして、リセール商品の「価値」を算出するのか?今回は、株式会社プライスバンク代表取締役社長・大原健氏にお話を伺った。

画像AIの研究経験をもとに

プライスバンクは、大原氏が画像AIや、中古品査定技術に携わる経験によって生まれた。大原氏は元々、ハーバード大学付属研究所、アメリカ ノースイースタン大学、東京大学在籍時から画像AIを研究しており、2000年前後あたりから、ネットベンチャーの立ち上げに複数参画するなかで、日本のファッション界としては割と早い段階で 業界へのデジタル導入支援なども行っていたという。
そしてシリコンバレーにてBoom.tvの共同創業などを経験した後に、「その頃、まだ画像AI活用によって可能となる業務効率化やさまざまなソリューションをよりしっかりと日本国内に浸透させたい」との想いから、2017年より日本に戻り、読み取った商品の画像から買取査定価格などを割り出し、買取業務の大幅な業務削減・効率化を実現する「かいとりロボ」の開発・サービス提供に注力してきた。この経験の中で、中古品査定技術の買取価値の算出における課題を感じたという。
そこで、画像AI解析を業務削減、効率化や商品査定だけでなく、商品の価値の変容過程などに関するデータ活用が行われれば、より広いマーケティングや販売戦略につながると確信したと大原さんは語っている。そのためには、商品価値の判断に足るデータ取得や、開発リソースへの注力が不可欠となる。このような背景から株式会社プライスバンクの設立に至った。

画像だけからでも商品の紐付けを可能に

大原さんによると、元々画像解析AIの技術では、型番や年数などテキストで読み込みできるデジタル情報の場合は、あらゆるサイトを横断し、商品情報と紐付けすることが既に可能となっている。しかし、そもそも型番などがなく、フリマやオークションサイトにおいて写真のみでしか状態が判断しずらい商品--例えば洋服などのファッション系アイテムなどは、そうした紐付けが難しいとされてきたのだという。
しかしプライスバンクの画像解析AIでは、型番や商品仕様などのテキスト情報がなくとも、画像自体で検索し、各サイトを横断して商品の紐付け作業を行うことを実現した。
つまり、プライスバンクを利用すると、フリマやオークションサイトに掲載されている商品も含め、より膨大なデータベースを元に商品価格の査定が可能になる。また、特にファッションアイテムでは取り扱い状態や経過時間、流行などによる価値の変動も起こりやすいが、それらの予測も取得したデータベースからの算出が可能になるという。

独自の画像AI技術

プライスバンク社独自のAIの開発には、大原氏自身が立ち上げに携わった株式会社エーエヌラボで10年以上研究・開発してきた画像AI技術が応用されている。
実際のデータ解析は、以下のような流れで行われる。まず、各種ブランドの公式サイト、ポータルサイト、個別のECサイト、フリマ、オークションサイトからそれぞれの商品画像をネットで収集し、独自の画像AI技術でデータベース化する。その後、実際にWeb上に投稿された商品を解析する際に、そのデータベースとマッチング処理を行い、商品の型番を認識し、紐付け・統計処理を行うことで査定が可能となる。
1 / 2 ページ
この記事をシェアする
リンクをコピーしました
CONTACTお問い合わせフォーム
ご質問やご要望がございましたら、以下のフォームに詳細をご記入ください。
お問い合わせ項目必須